On the Coherence of Large-Scale Networks with Distributed PI and PD Control

Emma Tegling and Henrik Sandberg
Networked systems: *global* objectives, but *local* feedback

Are there limitations to network *performance*?
Problem setup: Linear, second-order consensus subject to distributed disturbances

- Consider connected graph with N agents
- Each agent i is double-integrator
 \[
 \dot{x}_i(t) = v_i(t) \\
 \dot{v}_i(t) = u_i(t) + w_i(t)
 \]
- Control objective: follow trajectory $\bar{x}_i(t) := \bar{v}t + \delta_i$
- Standard linear consensus / Proportional (P) control
 \[
 u_i = -\sum_{j \in \mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(v_i - v_j) - f_0 x_i - g_0 v_i
 \]
 Relative feedback
 Absolute feedback
- Let each agent be subject to stochastic disturbance $w_i(t)$

x_i, v_i deviation from state trajectory, δ_i setpoint, f_{ij}, g_{ij}, f_0, g_0 fixed, constant gains, \mathcal{N}_i neighbor set
Example 1: Large-scale vehicle platoons

- Objective: follow trajectory \(\bar{x}_i(t) := \bar{v}t + \delta_i \)
 - common cruising speed \(\bar{v} \)
 - tight constant spacing \(\Delta \), so that \(\delta_i = \Delta i \)

- Example control law: look-ahead, look-behind control

\[
u_i = f^+(x_{i+1} - x_i) + f^-(x_{i-1} - x_i) + g^+(v_{i+1} - v_i) + g^-(v_{i-1} - v_i)
\]

\((f^+, f^-, g^+, g^- \text{ constant gains})\)

- With disturbances: objectives only achieved approximately

- What happens if the platoon grows?
Example 1 (contd.): Performance issues if control based on relative feedback

Formation is stable
Spacings \leftrightarrow are well-regulated (no collisions!)
However - not a rigid formation, not coherent!
Fundamental limitation to local, static feedback (Bamieh et al., 2012)

Can dynamic feedback (PID control) help?
Example 2: Frequency control in power networks

- Objectives:
 - common, steady frequency $\bar{\omega}$ (60 Hz)
 - phase angles at equilibrium $\left(\theta_i - \theta_j\right) \sim P_i^*$

- Swing equation, or “droop control” (linearized)

\[
m_i \dot{\omega}_i = -d_i \omega_i - \sum_{j \in N_i} b_{ij} (\theta_i - \theta_j) + w_i
\]

(bij line susceptance, mi inertia, di damping)

- Transition to distributed generation affects power system dynamics
 - More disturbances, (many) more generators
Example 2 (contd.): Issues with scalability of standard droop controller

- Simulation of droop control on 10 vs 100 node network (tree graph)

- **Today**: Better scalability with distributed PI-control (dynamic feedback)
Problem setup: Performance is quantified through a measure of network coherence

- Consider each agent’s deviation from the network average
 \[y_i^{\text{dev}} = x_i - \frac{1}{N} \sum_{j=1}^{N} x_j \]

- Characterizes rigidity, coherence

- Performance is measured as *variance* of performance output, normalized by \(N \)
 \[V_N = \frac{1}{N} \mathbb{E}\{y^T(t)y(t)\} \]

- Interested in the *scaling* of the output variance with network size
Summary: We characterize scalability of distributed control laws

• **Model:** Second order consensus with performance output
 \[
 \begin{bmatrix}
 \dot{x} \\
 \dot{v}
 \end{bmatrix} = \begin{bmatrix}
 0 & I \\
 -\mathcal{L}_F - f_0 I & -\mathcal{L}_G - g_0 I
 \end{bmatrix} \begin{bmatrix}
 x \\
 v
 \end{bmatrix} + \begin{bmatrix}
 0 \\
 I
 \end{bmatrix} w
 \]
 \[
 y = \begin{bmatrix}
 I - \frac{1}{N}11^T & 0
 \end{bmatrix} \begin{bmatrix}
 x \\
 v
 \end{bmatrix}
 \]

 - Absolute feedback from \(x\) (\(v\)) if \(f_0\) (\(g_0\)) nonzero

• **Performance evaluation:**
 - Consider (asymptotic) scaling of variance
 \[V_N = \frac{1}{N} \mathbb{E}\{|y(t)^T y(t)|\}\]
 - Control law scales well only if \(V_N\) bounded in \(N\)

• **Objective:** Compare static vs. dynamic feedback

(\(\mathcal{L}_F, \mathcal{L}_G\) weighted graph Laplacians, assume \(\mathcal{L}_F = f\mathcal{L}, \mathcal{L}_G = g\mathcal{L}\) for some (weighted) \(\mathcal{L}\))
OUTLINE

Introduction and problem formulation

H_2

Evaluating input-output performance

Distributed PI and PD control

Conclusions and future work

On the Coherence of Large-Scale Networks with Distributed PI and PD Control

E. Tegling, tegling@kth.se
Performance is evaluated through input-output H_2 norms

Consider general linear system under white noise input

$$\begin{align*}
H : & \quad \dot{x} = Ax + Bw \\
& \quad y = Cx \quad (1)
\end{align*}$$

Recall:
Need to evaluate $V_N = \frac{1}{N} \mathbb{E}\{y^T y\}$, with $y = (I_N - \frac{1}{N} 11^T)x$

Lemma:
The squared H_2 norm of (1) from input w to output y gives

$$||H||_2^2 = \lim_{t \to \infty} \mathbb{E}\{y^T(t)y(t)\},$$

That is, the steady state output variance.

Evaluating system performance amounts to evaluating H_2 norms!
Eigenvalues near zero cause bad performance

Theorem

\[V_N = \frac{1}{N} \|H\|^2 = \frac{1}{2N} \sum_{n=1}^{N-1} \frac{1}{(f_0 + f\lambda_n)(g_0 + g\lambda_n)} \]

Example (Ring graph, uniform weights):

- Eigenvalues
 \[\lambda_n = 2 \left(1 - \cos \frac{2\pi n}{N} \right) \]

- As \(N \) grows: Arbitrarily many \(\lambda_n \) increasingly close to zero
- Sum blows up, unless \(f_0, g_0 \neq 0 \), i.e., absolute feedback

Precise scaling of \(V_N \) in \(N \) can be determined for regular graphs
P-control scales badly in sparse networks, unless absolute feedback available.

- **Recall:**
 \[u_i = -\sum_{j \in \mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(v_i - v_j) - f_0 x_i - g_0 v_i \]
 - **Relative feedback**
 - **Absolute feedback**

- Let network be \(d \)-dimensional lattice

\[d = 1 \quad d = 2 \quad d = 3 \]

Asymptotic performance scalings with static feedback (see e.g. Bamieh et al., 2012)

Up to a constant independent of gain parameter \(\beta \) and network size \(N \)

<table>
<thead>
<tr>
<th>Relative (x), relative (v)</th>
<th>Relative (x), absolute (v)</th>
<th>Absolute (x), relative (v)</th>
<th>Absolute (x), absolute (v)</th>
</tr>
</thead>
</table>
| \(V_N \sim \frac{1}{\beta^2} \left\{ \begin{array}{ll} N^3 & d = 1 \\
 N & d = 2 \\
 N^{1/3} & d = 3 \\
 \log N & d = 4 \\
 1 & d \geq 5 \end{array} \right. \) | \(V_N \sim \frac{1}{\beta} \left\{ \begin{array}{ll} N & d = 1 \\
 \log N & d = 2 \\
 1 & d \geq 3 \end{array} \right. \) | \(V_N \sim \frac{1}{\beta} \) |
Various strategies proposed to deal with performance limitations

- Assign select leaders with absolute measurement (1st order consensus)
 - S. Patterson et al. “Leader selection for optimal network coherence,” CDC 2010
 - M. Pirani et al. “Coherence and convergence rate in networked dynamical systems,” CDC 2015

- Optimize gains, change symmetries

- Here: use distributed PID-control
 - D. Lombana and M. di Bernardo, “Distributed PID control for consensus of homogeneous and heterogeneous networks, TCNS 2016
Idea: use derivative or integral action to substitute unavailable measurement

Derivative action
Absolute x-measurement

- Derivative of x-measurement corresponds to v
 \[
 \frac{dx_i}{dt} = v_i(t)
 \]
- *Ideally:* same performance as with absolute feedback in x, v
- Ideal derivative action not possible to implement + sensitive to noise

Integral action
Absolute v-measurement

- Integral of v-measurement corresponds to x
 \[
 \int_0^t v_i(\tau)d\tau = x_i(t) - x_i(0)
 \]
- *Ideally:* same performance as with absolute feedback in x, v
- Ideal derivative action not possible to implement
- Decentralized integration does not give robustly stable system

Modifications of the control laws required to enable implementation
Filtered distributed PD-control (F-DPD)

- Control law: (Laplace domain!)

\[U_i = -\sum_{j \in \mathcal{N}_i} f_{ij}(X_i - X_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(V_i - V_j) - f_0 X_i - \frac{s}{\tau s + 1} K_D X_i \]

- Low-pass filter prevents too large variations in control signal

Theorem

\[V_{N}^{F-\text{DPD}} = \frac{1}{2N} \sum_{n=2}^{N} \left(f_0 + f \lambda_n \right) \left(g \lambda_n + \frac{K_D (\tau g \lambda_n + 1)}{\tau^2 (f_0 + f \lambda_n) + \tau g \lambda_n + 1} \right) \]

For any positive \(K_D \) and \(\tau \), \(V_{N}^{F-\text{DPD}} \) is uniformly bounded in \(N \) for any network:

\[0 < V_{N}^{F-\text{DPD}} < \frac{\tau^2 f_0 + 1}{2 f_0 K_D} \]

- Higher order filters give same result
- Theoretical performance best if filter constant \(\tau = 0 \)
Distributed averaging PI-control (DAPI) 1(2)

- Control law:
 \[
 u_i = -\sum_{j\in\mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j\in\mathcal{N}_i} g_{ij}(v_i - v_j) - g_0 v_i - K_I z_i
 \]
 \[
 \dot{z}_i = -v_i - \sum_{j\in\mathcal{N}_i} c_{ij}(z_i - z_j)
 \]

- Distributed averaging filter prevents de-stabilizing drift by aligning integral state

- Proposed in power system context (secondary frequency control)

Theorem

Assume uniform ratios \(c_{ij}/f_{ij}\), so \(\mathcal{L}_c = c\mathcal{L}\), then

\[
V_N^{\text{DAPI}} = \frac{1}{2N} \sum_{n=2}^{N} \frac{1}{fg\lambda_n^2 + \frac{K_I f(g_0 + \lambda_n(c+g)) + g_0 f\lambda_n(c^2\lambda_n + f + cg_0)}{f + cg_0 + c\lambda_n(c+g)}}.
\]

For any positive and finite \(K_I\) and \(c\), \(V_N^{\text{DAPI}}\) is uniformly bounded in \(N\):

\[
0 < V_N^{\text{DAPI}} < \frac{f + cg_0}{2K_I fg_0}.
\]
Distributed averaging PI-control (DAPI) \(2(2)\)

- Design of distributed averaging filter affects performance
 - \(c \to 0 \Rightarrow z_i \approx \int_0^t v_i(\tau) d\tau = x_i\)
 - \(c \to \infty \Rightarrow\) same perf. as w/o PI control
 - In some cases, optimal \(c^* > 0\)

Corollary (optimal distr. averaging)

The optimal gain \(c^* > 0\) if

\[
f > \frac{1}{\lambda_n} (g\lambda_n + g_0)^2,
\]

for all \(n = 2, \ldots, N\).

- For insights to optimal topology, see X. Wu et al. (ACC, 2016), D. Deka et al. (ACC, 2017)
Summary: PI and PD control can relax performance limitations

<table>
<thead>
<tr>
<th>Standard consensus</th>
<th>Relative x, relative v</th>
<th>Relative x, absolute v</th>
<th>Absolute x, absolute v</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_N \sim \frac{1}{\beta^2}$</td>
<td>$\begin{cases} N^3 & d = 1 \ N & d = 2 \ N^{1/3} & d = 3 \ \log N & d = 4 \ 1 & d \geq 5 \end{cases}$</td>
<td>$\begin{cases} N & d = 1 \ \log N & d = 2 \ 1 & d \geq 3 \end{cases}$</td>
<td>$V_N \sim \frac{1}{\beta}$</td>
</tr>
<tr>
<td>F-DPD, DAPI</td>
<td>N/A</td>
<td>$V_N \sim \frac{1}{\beta}$</td>
<td>$V_N \sim \frac{1}{\beta}$</td>
</tr>
</tbody>
</table>

(β parameter reflecting control effort, d lattice dimension)
Example 1: F-DPD in vehicular formation

- Assume no speedometer, but position is known
- Compare standard protocol to F-DPD

Subset of 100 vehicle platoon, simulated under white noise disturbance
Example 2: DAPI in frequency control

- In power networks, frequency ω_i can be measured, but measurement of phase θ_i requires phasor measurement unit (PMU)
- DAPI improves performance and scalability, +eliminates stationary error

Simulation of synchronization transient in radial network with $N=10$ and $N=100$ nodes
On the Coherence of Large-Scale Networks with Distributed PI and PD Control

E. Tegling, tegling@kth.se
Ongoing and future work

- Can scalings at all be improved without absolute measurements?
- Issues with measurement noise and bias
- Further applications in power networks:
 - Scalability of frequency control
 - Use of PMUs
Thank you!

tegling@kth.se

Funding support from: